

Guide to First-Order Logic Translations

Hi everybody!

In Wednesday's lecture, we talked about
how to translate statements from English

into first-order logic.

Translating into logic is a skill that takes
some practice to get used to, but once
you get the hang of it, it's actually
not too bad – and honestly it can be

a lot of fun!

In many ways, learning how to translate
into first-order logic is like learning

how to program.

You've got this crazy set of symbols and
terms with precise meanings...

∀

∃

→

∧

=

∨

P(x)

Q(x, y)

R(x)

S(y)

...and the goal is combine them together
in a way that says something interesting.

∀x. (P(x) ∨ R(x) →
 ∃y. (S(y) ∧ Q(x, y))
)

The good news is that, like programming,
there are a lot of common patterns that
come up time and time again in first-

order logic.

Once you've gotten the handle on these
patterns and the methodology of how to
do a translation, you'll find that it's

a lot easier to approach logic translations.

Let's illustrate this with an analogy.

Take a look at this Java code.

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

This is a method that takes in an array
of integers and returns the sum of the

elements in that array.

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

Let's focus on this for loop.

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

If you've been programming for a while,
you can look at this loop and pretty quickly
read it as “loop over the elements of an

array” loop.

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

There's actually a lot going on in this
loop, though.

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

There's a variable declaration here
that makes a new variable that tracks

an index...

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

...there's an increment operator used to
advance that index through the array...

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

...a selection statement that picks out a
single array element by using the variable

we declared in the loop...

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

...and a test to see whether we've read
everything that relies specifically on using
the < operator and not other operators

like == or <=.

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

When you're first learning to program,
code like this can seem really, really
complicated, but when you've been
programming for a while you don't

think about it that much.

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

It's just “idiomatic” code – you know what
it does by sight even if you don't think

too hard about what it means.

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

In many ways, first-order logic formulas
are the same way.

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) Here's a first-order logic formula
from lecture. It objectively has a lot

of symbols strewn throughout it.

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) However, once you've gotten the hang
of the idiomatic first-order logic

patterns, you'll see that this actually
isn't that bad!

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)
If you tried to build this formula

completely from scratch, it would be
really challenging. However, if you know the
patterns and how to string them together,
this is a very natural formula to write.

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)
This guide is designed to teach you
what these common patterns are, how
to combine them together, and how to

use them to translate complicated
statements.

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)
Think of it as a crash course in
first-order logic programming.

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)
With that said, let's get started!

Most of the time, when you're writing
statements in first-order logic, you'll
be making a statement of the form

“every X has property Y” or “some X has
property Y.”

Statements of these (usually) fall into
one of four fundamental types of

statements.

These four classes of statements are called
Aristotelian Forms, since they were first described
by Aristotle in his work “Prior Analytics” ... though
you don't need to know that unless you want to

show off at cocktail parties. ^_^

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

On Friday, we saw how to translate these statements into
first-order logic. Here's what we came up with.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

In lecture we spent time talking about why gets∀ gets

paired with and why gets paired with . We already talked→ and why ∃ gets paired with ∧. We already talked ∃ gets paired with ∧. We already talked ∧. We already talked

in lecture about why this is, so we're not going to review it
here. After all, our goal is to see how to use these

patterns, not how to derive them.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

However, you absolutely should memorize these patterns.
They're like the “loop over an array” for loop pattern in

Java, C, or C++ – they come up frequently and you ultimately
want to get to the point where you can easily read and

write them as a unit.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Now, let's see how we can use these four statements
as building blocks for constructing larger statements.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Imagine that we have these predicates available to us
to use...

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

...and that we want to translate this statement into
first-order logic.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Every orange cat is fluffy.

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

Let's see how we can use these formulas to help
out our translation.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Every orange cat is fluffy.

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

First, what kind of statement is this?

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Every orange cat is fluffy.

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

It seems to look a lot like this one – we're saying that
all objects of one kind (orange cats) are also of

another kind (fluffy).

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Every orange cat is fluffy.

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

Based on that...

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Every orange cat is fluffy.

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

...we can start adding in a bit of structure to our
first-order logic formula.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → x is fluffy)

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

From here, our goal is to keep replacing the remaining
English statements in the formula with something in

first-order logic that says the same thing.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → x is fluffy)

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

For example, this part of the formula is easy to
translate...

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → x is fluffy)

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

...because we have a predicate that directly expresses
this idea!

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → x is fluffy)

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

So let's go and snap that predicate in there.
Progress!

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

So what about the rest of the formula? How do we
express the idea that x is an orange cat?

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

Well, we have two independent predicates – Orange(x)
and Cat(x) – that each express a part of the idea.

How can we combine them together?

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

Let's begin by seeing how not to do this.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

I'm going to put up our trusty warning indicators to
show that what we're about to do is a really bad

idea.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

⚠ ⚠

Here's something common we see people do that
doesn't work,

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(Cat(x)) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

⚠ ⚠

This superficially looks like it works correctly – it seems
like it's saying that x is a cat that's orange.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(Cat(x)) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

⚠ ⚠

The problem is that it's not syntactically valid – it's the
sort of mistake that would be a “compile-time error” in

many languages.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(Cat(x)) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

⚠ ⚠

The reason this doesn't work is that Orange and Cat
are predicates – they take in objects and produce either

true or false.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(Cat(x)) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

⚠ ⚠

This means that the statement Cat(x) evaluates to
either “true” or “false.” Intuitively, it takes in an

object and returns a boolean.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(Cat(x)) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

⚠ ⚠
boolean

The problem is that Orange expects that it will take in
an object and return a boolean – but it's not being

provided an object as input!

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(Cat(x)) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

⚠ ⚠
boolean

This is the first-order logic equivalent of a type
error.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(Cat(x)) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

⚠ ⚠
boolean

So even though this might at first glance seem right,
it's not actually legal... so we're going to have to

find some other way of expressing this idea!

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(Cat(x)) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

⚠ ⚠
boolean

Let's revert back to what we had before.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

We're trying to express the idea that x is an orange
cat.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is an orange cat → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

If you think about it, that's the same as saying that
x is an orange and that x is a cat.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is orange and x is a cat → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

This is something that's a lot easier to translate into
first-order logic.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is orange and x is a cat → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

The “and,” for example, just becomes a ∧. We already talked
connective.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (x is orange ∧ x is a cat → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

And, given the predicates we have available, we can
translate the left and right halves of that expression

directly into first-order logic.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(x) ∧ Cat(x) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

Tada! We're done.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(x) ∧ Cat(x) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

Although this wasn't a particularly complicated example,
especially compared to what we did in class the other

day, I do think it's helpful to see where it comes from,
since we walked through it step-by-step.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Orange(x) ∧ Cat(x) → Fluffy(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

Hopefully that wasn't too bad! Let's go and do another
one.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Orange(x)
Cat(x)

Fluffy(x)

Available Predicates:

Let's change our available set of predicates so that we
can talk about whether something's a corgi, whether

something's a person, and whether one thing x
loves another thing y.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

With these predicates, let's see how to translate
this statement into first-order logic.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

There's a corgi that loves everyone.

Again, we can start off by asking what kind of statement
this is. What exactly is it that we're talking about here?

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

There's a corgi that loves everyone.

Fundamentally, we're saying that somewhere out there in
the vast, magical world we live in, there is a corgi that

has some specific set of properties.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

There's a corgi that loves everyone.

(Specifically, the corgi has the property that it loves
everyone!)

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

There's a corgi that loves everyone.

That statement looks a lot like this one over here – we're
saying that some corgis happen to love everyone.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

There's a corgi that loves everyone.

We'll partially translate our statement by using that
general pattern.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (x is a corgi ∧ x loves everyone)

As before, we'll continue to make incremental progress
translating bits and pieces of this formula until we

arrive at the final result.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (x is a corgi ∧ x loves everyone)

For example, we can directly express the idea that x is
a corgi, so let's go do that.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧ x loves everyone)

Now, we have to think about how to translate the
statement “x loves everyone.”

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧ x loves everyone)

It's not immediately clear how to do this given the
four general forms we have above. This means that

we need to think a bit before we move on.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧ x loves everyone)

When translating statements like these, it sometimes helps
to introduce variables representing names for things.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧ x loves everyone)

So, for example, we could rewrite “x loves everyone” to
“x loves every person y.”

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧ x loves every person y)

This is suggesting that we're probably going to want to
use one of the templates on the left, since this
statement says something about every person y.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧ x loves every person y)

To see exactly how this matches, we might want to
rewrite this blue part to focus more on what we're

saying about y.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧ x loves every person y)

When I was learning how to write, I remember being told
that the passive voice should not be used. But sometimes,
like in this case, it's actually helpful for exposing the
structure of what's going on – every person y is

loved by x.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧ every person y is loved by x)

If we write things this way, it becomes a bit clearer
that this statement matches this first general

pattern. Let's go and apply it!

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧ every person y is loved by x)

Tada!

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (y is a person → y is loved by x)

)

You'll notice that I've written this part of the formula
on the next line and indented it. It's extremely useful

to structure the formula this way – it shows what's nested
inside of what and clarifies the scope of the variables
involved. While it's not strictly required that you do
this in your own translations, we highly recommend it!

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (y is a person → y is loved by x)

)

Now that we're here, we can do the finishing touches
of translating this statement by replacing these blue

parts with predicates!

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (y is a person → y is loved by x)

)

That gives this, our final statement.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

And hey! We're done!

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

Before we move on, let's pause and look at the
formula that we came up with.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

Just as we can use the above patterns to translate
the original statement into logic, we can use those

same patterns to translate this out of logic and back
into English (or any language of your choice,

really!)

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

This first part is the start of a statement of the
form “some Ps are Qs”...

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

So we can start our translation like this.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

There is a corgi...
 that every person
 is loved by.

This part of the statement starts off a statement of
the form “all Ps are Qs”...

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

There is a corgi...
 that every person
 is loved by.

...so we can continue our translation like this.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

There is a corgi
 that every person...
 is loved by.

The last bit is a predicate, so we can just read it off.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

There is a corgi
 that every person
 is loved by.

We now have a (grammatically awkward) but correct
translation of our logic statement back into English.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

There is a corgi
 that every person
 is loved by.

With a bit of English rewriting, we can get back to our
original statement. Nifty! Looks like we got it right!

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

“There is a corgi that
loves everyone.”

Let's try another translation, just to get some more
practice with this skill.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

How might we translate this statement?

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

Everybody loves at least one corgi.

Before we walk through this one, why don't you try
translating this one on your own? Try using a similar

thought process to the one we used earlier.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

Everybody loves at least one corgi.

Did you actually try this? Because if you didn't, you
really should. Like, seriously.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

Everybody loves at least one corgi.

So you translated the statement on your own? Great!
Let's do this one together.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

Everybody loves at least one corgi.

First, we need to start off by thinking about what
exactly this statement says.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

Everybody loves at least one corgi.

This says “if you pick any person, you'll find that
there's some corgi that they like.”

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

Everybody loves at least one corgi.

That's a statement of this type...

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

Everybody loves at least one corgi.

...so we can make some initial progress like this.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (x is a person → x loves at least one corgi)

From here, we can translate the “x is a person” part
directly into first-order logic.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) → x loves at least one corgi)

Now, we have to figure out how to translate that
last part.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
) x loves at least one corgi
)

As before, let's introduce more variables so that we
have names for things.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
) x loves at least one corgi y
)

And, as before, let's fiddle around with the verb
structure to make clearer what kind of statement this is.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
) there is a corgi y that is loved by x
)

From here it's (hopefully) a bit clearer that this is
a “some P's are Q's” statement – some corgis

happen to be loved by person x.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
) there is a corgi y that is loved by x
)

We can make more progress on our translation by
using that template.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
) ∃y. (y is a corgi ∧ y is loved by x)
)

At this point we just need to put in the finishing touches
and rewrite the blue parts using predicates...

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
) ∃y. (y is a corgi ∧ y is loved by x)
)

...like this! Tada! We're done.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
) ∃y. (Corgi(y) ∧ Loves(x, y))
)

It's interesting to put the two statements we
translated side-by-side with one another.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
) ∃y. (Corgi(y) ∧ Loves(x, y))
)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

These statements have a lot of similarities, though
they're clearly different in a number of ways.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
) ∃y. (Corgi(y) ∧ Loves(x, y))
)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

One major difference between these two is the order
in which the quantifiers appear. The first has them

in the order , and the second has them in the order∃ gets paired with ∧. We already talked∀ gets

∀ gets∃ gets paired with ∧. We already talked.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Corgi(y) ∧ Loves(x, y))

)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

Something I’d really like to stress is that, when we
did these translations, we didn't just magically “guess”

that we needed those particular quantifiers and that they
would be in these orders.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Corgi(y) ∧ Loves(x, y))

)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

Instead, we started off with the original statement and
incrementally translated it top-down, only adding in the

quantifiers when we needed them.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Corgi(y) ∧ Loves(x, y))

)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

One of the biggest mistakes we see people make when
learning first-order logic for the first time is trying
to write the whole statement in a single go, adding in
quantifiers somewhat randomly to try to get things to

work.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Corgi(y) ∧ Loves(x, y))

)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

Don't do that! It's really, really hard to get right on
a first try.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Corgi(y) ∧ Loves(x, y))

)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

Instead, use the approach we outlined here. Work slowly,
going one step at a time, and only adding in quantifiers

when you need them.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Corgi(y) ∧ Loves(x, y))

)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

If you do, you're a lot less likely to make mistakes.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Corgi(y) ∧ Loves(x, y))

)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

Going back to our programming analogy, you can write
a lot of similar programs that all use if statements and

for loops.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Corgi(y) ∧ Loves(x, y))

)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

However, you rarely write programs by just throwing a
bunch of loops and if statements randomly and hoping

that it'll work – because chances are, it won't.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Corgi(y) ∧ Loves(x, y))

)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

Instead, you work from the outside in – add in a loop
when you need it, and if you need to nest an if
statement, then you add it when you need it.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

Corgi(x)
Person(x)

Loves(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Corgi(y) ∧ Loves(x, y))

)

∃x. (Corgi(x) ∧
∀y. (Person(y) → Loves(x, y))

)

So at this point we've gotten some practice with the
fundamentals of translation. Pretty much everything else

we'll be doing is just more advanced applications of these
concepts.

To give you a better sense of how these concepts
scale up to more complicated examples, let's walk through
some more complex statements and how to translate them.

Along the way, you'll see a bunch of nifty tricks and
insights that will help you out going forward.

Let's start off by seeing how to talk about pairs of
things.

Earlier, we talked about this Java code for iterating
over all the elements of an array.

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

Let's imagine we want to write a different piece of code
that iterates over all pairs of elements in the array.

How might we do that?

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

private int sumOf(int[] elems) {
 int result = 0;
 for (int i = 0; i < elems.length; i++) {
 result += elems[i];
 }
 return result;
}

Here's one possible option using the venerable
“double-for-loop” pattern that you've probably gotten

to know and love.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

As with the regular “loop over the elements of an array”
loop, the double-for-loop is a programming idiom. Once
you've seen it enough times, you just know what it means

and don't have to think too much about it.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

One interesting detail about the double-for-loop pattern
is that putting one loop inside of another yields a way

of iterating over pairs of things.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Turns out, we can adapt this idea to work in first-order
logic as well!

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Let's imagine that we have these two predicates, one
of which says something is a pancake, and one of which

says that two things taste similar.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

How might we translate this statement into first-order
logic?

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

Any two pancakes taste similar

This statement is different from our earlier one
because it talks about any possible pair of objects

rather than any possible individual object.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

Any two pancakes taste similar

The good news is that we can translate it in a way
that bears a strong resemblance to the above Java

code with a double for loop.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

Any two pancakes taste similar

Specifically, we'll proceed as follows.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

Any two pancakes taste similar

First, let's introduce some new variables into our
English so that we have names for things.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

Any two pancakes x and y taste similar

We can then rejigger the English statement so that it
looks like this. After all, this means the same thing

as what we started with.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

Any pancake x tastes similar to any pancake y

Now, we can think back to our Aristotelean form templates
that we just got really familiar with and see how to

apply them here.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

Any pancake x tastes similar to any pancake y

Since this statement says something to the effect of
“any pancake x has some special property...”

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

Any pancake x tastes similar to any pancake y

... we can begin translating it into logic like this.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. (Pancake(x) →
) x tastes similar to any pancake y
)

Now, let's look at that middle portion and see if we
can translate it as well.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. (Pancake(x) →
) x tastes similar to any pancake y
)

Reordering the statement gives us this to work with,
which exposes a bit more structure.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. (Pancake(x) →
) any pancake y tastes similar to x
)

We can then rewrite it like this.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. (Pancake(x) →
∀y. (Pancake(y) →

(x tastes similar to y
)

)

As a final step, we'll translate that innermost portion.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. (Pancake(x) →
∀y. (Pancake(y) →

(x tastes similar to y
)

)

Tada! We're done.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

We now have a statement that says that any two pancakes
taste similar. (We can debate whether this is true or not

in a separate guide.)

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

Hopefully, you can notice that there's a bit of a parallel
to the Java double for loop given above.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

If you think as quantifiers as a sort of “loop over
everything” – which isn't that far from the truth – then
the program and the formula both say “loop over one
thing, then loop over another, then do something with

the pair.”

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

So if you ever need to write something where you're
dealing with a pair of things, you now know how! You
can just write two independent quantifiers like this.

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

private void printPairsIn(int[] elems) {
 for (int i = 0; i < elems.length; i++) {
 for (int j = 0; j < elems.length; j++) {
 System.out.println(elems[i] + ", " + elems[j]);
 }
 }
}

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

It turns out, though, that there's another way to
express this concept that some people find a bit easier
to wrap their head around. For completeness, let's

quickly talk about this before moving on.
Pancake(x)

TasteSimilar(x, y)

Available Predicates:

Let's go back to our original statement.
Pancake(x)

TasteSimilar(x, y)

Available Predicates:

Any two pancakes taste similar

As before, let's add in some variables names so that
we have ways of keeping our pancakes straight.

(Ever gotten your pancakes confused? It's a horrible
way to start off your day.)

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

Any two pancakes x and y taste similar

The idea is that we know that, at this point, we're
going to be reasoning about a pair of pancakes, and

we're going to reason about them right now.
Pancake(x)

TasteSimilar(x, y)

Available Predicates:

Any two pancakes x and y taste similar

Therefore, rather than introducing two quantifiers at
different points in time, we'll introduce both quantifiers

at the same time...
Pancake(x)

TasteSimilar(x, y)

Available Predicates:

Any two pancakes x and y taste similar

...like this.
Pancake(x)

TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (x and y are pancakes →
 x and y taste similar
)

Generally speaking, it is not a good idea to introduce
quantifiers for variables all at once, but in the special

case of working with pairs, it's perfectly safe.
Pancake(x)

TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (x and y are pancakes →
 x and y taste similar
)

So now all we have to do is translate each of the
remaining English parts into English.

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (x and y are pancakes →
 x and y taste similar
)

Here's one way to do this.
Pancake(x)

TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

And we're done! This is a totally valid way to translate
our original statement into first-order logic.

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

It's interesting, and useful, to put this second
translation side-by-side with our original one.

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

These statements look pretty different, but they say
exactly the same thing. Both are perfectly correct.

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

There's actually something pretty cool and pretty
deep going on here.

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

For now, ignore the quantifiers. Just look at the
predicates and how they relate.

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

Abstractly, here are the two propositional logic patterns
used in the two statements.

Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

A → B → C A ∧ B → C

These statements are actually logically equivalent to one
another. (If you've checked out the Guide to Negating

Formulas, you'll see a cool way to derive this!)
Pancake(x)

TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

A → B → C A ∧ B → C≡

This pattern – changing a chain of implications into
a single implication and a lot of ANDs and vice-versa –

is sometimes called Currying and has applications in
functional programming. (This is a total aside... you're not

expected to know this.)Pancake(x)
TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

A → B → C A ∧ B → C≡

Ultimately, what's important is that you understand
that both of these statements say exactly the same
thing and that you end up comfortable working with

both of them. Feel free to use whichever one you like
more, but make sure you can quickly interpret both.Pancake(x)

TasteSimilar(x, y)

Available Predicates:

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

A → B → C A ∧ B → C≡

Let's do another example of where we might want to
go and work with pairs.

Let's switch our predicates from pancakes to people.
Person(x)

Knows(x, y)

Available Predicates:

How might we translate this statement into first-order
logic?

Person(x)
Knows(x, y)

Available Predicates:

Everyone knows at least two people

Well, it seems like there's going to be a pair involved
here somewhere, since there's something about

“at least two people” here.
Person(x)

Knows(x, y)

Available Predicates:

Everyone knows at least two people

However, that does not mean that we should immediately
start writing out something about a pair of people.
Remember – we should only introduce quantifiers when
we immediately need them, and it's not clear that
we need to start talking about these two people

yet.
Person(x)

Knows(x, y)

Available Predicates:

Everyone knows at least two people

Instead, let's look at the overall structure of this
statement and see what it is that we're trying to say.

Person(x)
Knows(x, y)

Available Predicates:

Everyone knows at least two people

As usual, let's start by introducing some variables so
that we can keep track of who we're talking about.

Person(x)
Knows(x, y)

Available Predicates:

Every person x knows at least two people y and z

We can then partially translate this statement using
the techniques we've seen so far.

Person(x)
Knows(x, y)

Available Predicates:

∀x. (Person(x) →
 x knows at least two people y and z
)

Now, we need to express the idea that x knows two
people x and y.

Person(x)
Knows(x, y)

Available Predicates:

∀x. (Person(x) →
 x knows at least two people y and z
)

There are a couple of ways to do it, and since we've
got time, we'll do it in two different ways.

Person(x)
Knows(x, y)

Available Predicates:

∀x. (Person(x) →
 x knows at least two people y and z
)

Previously, we talked about working with pairs in
a universally-quantified setting. Here, though, this
particular pair is going to be existentially quantified,
since we're saying that there exist two people with

certain properties.Person(x)
Knows(x, y)

Available Predicates:

∀x. (Person(x) →
 x knows at least two people y and z
)

It might be easier to see that if we rewrite things like
this.

Person(x)
Knows(x, y)

Available Predicates:

∀x. (Person(x) →
 there are two people y and z that x knows
)

Thinking back to our double for loop intuition, let's see
if we can translate this statement by nesting some

existential statements inside of one anothter.
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
 there are two people y and z that x knows
)

Let's begin by rewriting the English like this.
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
 there is a person y that x knows and a different

person z that x knows.
)

We can now make some progress translating this.
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

there is a different person z that x knows
)

)

We can then finish up the rest of this translation by
translating this blue part in the middle. But that

shouldn't be too bad!
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

there is a different person z that x knows
)

)

Here's one way to do it.
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧
z is a different person from y

)
)

)

The last step is to say that z and y aren't the same
person.

Person(x)
Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧
z is a different person from y

)
)

)

Even though we didn't explicitly list it in our list of
predicates, remember that first-order logic has the

equality predicate built into it, so we're always allowed to
state that two things are the same or are different.

Person(x)
Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧
z is a different person from y

)
)

)

Here's one way to do that.
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧ z ≠ y)
)

)

And hey! We're done!
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧ z ≠ y)
)

)

Notice how we're using a pair of nested existential
quantifiers to express the idea that there's a pair of

people with specific properties.
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧ z ≠ y)
)

)

Hopefully, this seems familiar, since it's closely related
to the analogous doubly-nested quantifiers we saw

when talking about pairs of pancakes.
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧ z ≠ y)
)

)

Just as we could write “any pair of pancakes” in two
ways, we can write “some pair of different people” in

two ways.
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧ z ≠ y)
)

)

Here's the alternative approach. Here, we introduce
the quantifiers for y and z at the same time, then

constrain y and z with preconditions at the same time.
Person(x)

Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. ∃z. (Person(y) ∧ Person(z) ∧ z ≠ y ∧

Knows(x, y) ∧ Knows(x, z)
)

)

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧ z ≠ y)
)

)

These two approaches are completely equivalent, and both
of them are correct. As with quantifying over pairs
using , it's a good idea to get comfortable with∀ gets

quantifying over pairs using with both of these∃ gets paired with ∧. We already talked

approaches.Person(x)
Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. ∃z. (Person(y) ∧ Person(z) ∧ z ≠ y ∧

Knows(x, y) ∧ Knows(x, z)
)

)

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧ z ≠ y)
)

)

On Problem Set Two, you'll get to consider a variation
on this problem: how would you express the idea that

this person x knows exactly two people? That's a trickier
proposition, but (hypothetically speaking) you may want

to use this basic setup as a starting point.Person(x)
Knows(x, y)

Available Predicates:

∀x. (Person(x) →
∃y. ∃z. (Person(y) ∧ Person(z) ∧ z ≠ y ∧

Knows(x, y) ∧ Knows(x, z)
)

)

∀x. (Person(x) →
∃y. (Person(y) ∧ Knows(x, y) ∧

∃z. (Person(z) ∧ Knows(x, z) ∧ z ≠ y)
)

)

There's one last topic I'd like to speak about in this
guide, and that's what happens when you start talking

about sets and set theory in first-order logic.

Even if you don't find yourself talking about set theory
much in first-order logic, the lessons we'll learn in the

course of exploring these sorts of translations are
extremely valuable, especially when it comes to checking

your work.

Let's imagine that we have the set of predicates over to
the left. We can say that something is a set, that one
thing is an element of something else, that something

is an integer, and that something is negative.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

How might we translate this statement into first-order
logic?Set(x)

x ∈ y
Integer(x)

Negative(x)

Available Predicates:

The set of all natural numbers exists

This statement is, in many ways, quite different from the
ones we've seen so far.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

The set of all natural numbers exists

First, the statement doesn't seem to look anything like
the Aristotelian forms that we saw earlier. Instead,

it just says that something exists.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

The set of all natural numbers exists

Second, this statement refers to a specific thing – the
set of all natural numbers – and so it's not exactly
clear how we'd actually translate this into logic.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

The set of all natural numbers exists

If you encounter a statement like this one, which asks
you to show that something exists, it often helps to

reframe the statement to translate in a different light.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

The set of all natural numbers exists

Rather than saying “this specific thing exists...”

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

The set of all natural numbers exists

...we can say something like this – that of the sets that
are out there, one of them has some special properties.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

There is a set that is the set of all natural numbers

This looks a lot more like the forms that we saw earlier,
so we can start to translate it into first-order logic

using similar techniques.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

There is a set that is the set of all natural numbers

Here's one way that we can get this translation started.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

So now we need to find a way to pin down the fact
that S is the set of all natural numbers.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

To do so, let's take a few minutes to think about
how we might do that.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

If we're going to say that S is the set of all natural
numbers, we're probably going to need to find some
way to talk about its elements. After all, sets are

uniquely defined by their elements, so if we want to say
that we have a set with a certain property, we can
do so by saying that it has the right elements.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

We're not sure how we're going to do that, but at least
we know to keep an eye out for that.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

Next, we need to find a way to say that something is
a natural number.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

We have the ability to say that something is an integer
or that something is negative, and that might come
in handy – the natural numbers are the integers

that aren't negative!
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

So even if we have no idea where we're going right now,
we at least know that (1) we want to say something about
 the elements of S, and (2) we're going to try to say

something about how they're integers that aren't negative.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

Rather than just show you the final answer, let's see how
not to do this.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

As before, I'm going to put up the emergency warning
flags indicating that we're doing something wrong here.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)
⚠ ⚠

Let's try an initial approach. What does it mean for S
to be the set of all natural numbers?

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)
⚠ ⚠

Here's a reasonable – but incorrect – way of thinking
about it. If you don't see why this is incorrect, don't
worry! It's subtle, which is precisely why we're taking

the time to go down this route.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S contains all the natural numbers

)
⚠ ⚠

Now, how might we translate this red statement into
first-order logic?

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S contains all the natural numbers

)
⚠ ⚠

Again, let's change up the ordering of the English to
expose a bit more structure.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
every natural number is an element of S

)
⚠ ⚠

This matches one of our nice Aristotelian forms, so we
can rewrite it like this.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x is a natural number →

x is an element of S
)

)

⚠ ⚠

We can clean up the consequent of that implication (the
part that's implied) using the predicates we have available.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x is a natural number →

x ∈ S
)

)

⚠ ⚠

As for the antecedent – as we saw earlier, the
natural numbers are the integers that aren't negative,

so we can say something like this.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x is an integer and x isn't negative →

x ∈ S
)

)

⚠ ⚠

We can then translate that into logic like this. Done! ...ish
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠

So it seems like we're done, but we still have those
big red warning signs everywhere. Why doesn't this

work?
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠

Well, fundamentally, the way this statement works is by
saying “there is some set S that is the set of all

natural numbers.”
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠

Since this is an existentially-quantified statement, it's
true if we can find a choice of S that makes it true.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠

We've tried to structure this statement with the intent
that, specifically, the only choice of S that will work

should be , the set of all natural numbers.ℕ, the set of all natural numbers.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠

If we can make this statement true without choosing
S to be the set of all natural numbers, then we haven't

actually stated that exists.ℕ, the set of all natural numbers.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠

Unfortunately, it is entirely possible to choose a set
besides that makes this formula true.ℕ, the set of all natural numbers.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠

Specifically, what if we choose S to be the set ?ℝ?
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠
Choose S = ℝ.

That means that S is definitely a set...
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠
Choose S = ℝ.

...and this part of the formula is true: every nonnegative
integer is contained in S.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠
Choose S = ℝ.

This means that the statement we've written doesn't
say “the set of all natural numbers exists.” It says

“there is some set that contains all the natural numbers,”
which is similar, but not the same thing.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠
Choose S = ℝ.

Fundamentally, the issue with this translation is that we've
put on a set of minimum requirements on S, not a set of
exact requirements. As a result, it's possible to make
this formula true with a choice of S that has some, but
not all, of the properties of . We're going to needℕ, the set of all natural numbers.

to rework the formula to correct that deficiency.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠
Choose S = ℝ.

To do so, let's go back in time to the last point where
everything was working correctly...

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

⚠ ⚠
Choose S = ℝ.

... which was this point here!
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

Okay, so we know that just saying “S contains all the
natural numbers” isn't going to work, because other
sets besides can also contains all the natural ℝ?

numbers.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

So what other approaches can we take?
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

I'm going to show you another approach that doesn't
work, which is a common strategy that we see students

take after they realize that the previous approach
is incorrect.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

Again, up go the warning signs!
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)
⚠ ⚠

Maybe we should think about this differently. The reason
that we could get away with choosing for our set ℝ? S
was that our formula said “S has to have at least these
elements.” What if we try a different tactic and say

that S has to have at most these elements?Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)
⚠ ⚠

That is, what if we try replacing the previous blue
statement with this red statement?

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
the only elements of S are natural numbers

)
⚠ ⚠

This isn't the same thing as before... do you see why?
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
the only elements of S are natural numbers

)
⚠ ⚠

Given that it's different, let's see if we can translate
this into first-order logic.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
the only elements of S are natural numbers

)
⚠ ⚠

Rewording this statement and introducing some variables
helps make clearer what we're going to do next.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
every element of S is a natural number

)
⚠ ⚠

This statement matches one of our forms, so let's
go and translate it.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

x is a natural number
)

)

⚠ ⚠

And, since we've seen earlier how to express the idea
that x is a natural number...

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

x is a natural number
)

)

⚠ ⚠

...we can complete our translation like this.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
)

)

⚠ ⚠

So we're done! But is it correct?
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
)

)

⚠ ⚠

As before, we should check to make sure that the only
way this statement can be made true is by picking S to
be the set of all natural numbers. Is that really the

case?
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
)

)

⚠ ⚠

Unfortunately, no. What if we pick this choice for S?
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
)

)

⚠ ⚠
Choose S = {137}.

Well, it's a set...
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
)

)

⚠ ⚠
Choose S = {137}.

... and this statement is true: every element of S is indeed
a natural number.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
)

)

⚠ ⚠
Choose S = {137}.

So our translation isn't correct – even if there is no
set of all natural numbers, we can still make the formula
true by picking some other set... in this case, any set

that happens to only contain natural numbers.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
)

)

⚠ ⚠
Choose S = {137}.

Interesting, we could have also chosen S = Ø as a
counterexample. Then this inner statement happens to
be vacuously true because there are no elements of S

to speak of!
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
)

)

⚠ ⚠
Choose S = Ø

So here are our two attempted translations, each of
which isn't correct.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

Interestingly, although each of them is wrong, they're
wrong in complementary ways.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

Our first statement was wrong because it let us choose
sets that had all the natural numbers, plus some other

things that shouldn't be there.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

However, notice that we can't pick an S that misses
any natural numbers, because the inside says that all

the natural numbers should be there.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

This second statement was incorrect because it let us
choose sets S with too few elements, since all it required
was that elements that were present were natural numbers.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

However, note that this formula doesn't let us choose
a set S that contains anything that's not a natural number,
since it requires everything in S to be a natural number.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

In a sense, you can think of our translations this way...
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

This first part says “ ℕ, the set of all natural numbers. ⊆ S,” since it requires that
every natural number be in S.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

(ℕ ⊆ S)

This second part says S , since it requires that⊆ ℕ, the set of all natural numbers.

every element of S be a natural number.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

(ℕ ⊆ S)

(S ⊆ ℕ)

In other words, each individual constraint doesn't
guarantee that S has to be , but the two statementsℕ, the set of all natural numbers.

collectively would require that S = !ℕ, the set of all natural numbers.Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

(ℕ ⊆ S)

(S ⊆ ℕ)

Let's wind back the clock and see if we can use this
to our advantage.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)⚠ ⚠
∃S. (Set(S) ∧

∀x. (x ∈ S →
Integer(x) ∧ ¬Negative(x)

)
)

(ℕ ⊆ S)

(S ⊆ ℕ)

So this is the last point where we had the right idea.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

The problem was that in the last two cases, we kept
mistranslating this blue statement, which got us the wrong

answer.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S is the set of all natural numbers

)

So what if we translate it like this?
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S ⊆ ℕ ∧

 ℕ ⊆ S
)

We can then snap in the two parts of the formulas
that we built up earlier...

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
S ⊆ ℕ ∧

 ℕ ⊆ S
)

...like this.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

And hey! This actually works!
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

If we choose an S that contains something it shouldn't,
this part will catch it...

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

...and if we pick an S that misses something it was
supposed to contain, this part catches it!

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

So in that sense, we have a working formula!
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

As a final step, though, we can clean this up a bit.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

Look at these two implications.
Notice anything about them?

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

Except for the fact that the antecedent and the
consequent have been swapped, they're the same!

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

And hey... don't we have a special symbol to say that
A B and that B A?→ and why ∃ gets paired with ∧. We already talked → and why ∃ gets paired with ∧. We already talked

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

So as a final step, let's take this formula and
rewrite it using the biconditional connective.

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
) ∧
∀x. (Integer(x) ∧ ¬Negative(x) →

x ∈ S
)

)

That ends up looking like this.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S ↔ Integer(x) ∧ ¬Negative(x))

)

This single biconditional contains everything we need.
Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S ↔ Integer(x) ∧ ¬Negative(x))

)

In the forwards direction, it says “everything in S needs
to be a natural number.”

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S ↔ Integer(x) ∧ ¬Negative(x))

)

In the reverse direction, it says “every natural number
needs to be in S.”

Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S ↔ Integer(x) ∧ ¬Negative(x))

)

Generally, if you're trying to write a statement
in first-order logic that says that some set exists (which,
hypothetically speaking, might happen sometime soon),

you might find yourself using a biconditional to pin down
the elements of the set. It's an easy way to say

“the set contains precisely these elements.”Set(x)
x ∈ y

Integer(x)
Negative(x)

Available Predicates:

∃S. (Set(S) ∧
∀x. (x ∈ S ↔ Integer(x) ∧ ¬Negative(x))

)

Wow! We've covered a ton in this guide. Before we
wrap up, let's briefly recap the major themes and ideas

from what we've seen here.

First, we saw these four basic statement building blocks.
These are idiomatic expressions in first-order logic – the same

way that a for loop over an array is idiomatic in most
programming languages – and are extremely useful in

assembling more complex statements.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

We saw that translating things incrementally, going one
step at a time and judiciously rewriting the English, is
a reliable way to end up with good translations. Plus,

it sidesteps a ton of classes of mistakes.

“All Ps are Qs.” “Some Ps are Qs.”

“No Ps are Qs.” “Some Ps aren't Qs.”

∀x. (P(x) → Q(x)) ∃x. (P(x) ∧ Q(x))

∀x. (P(x) → ¬Q(x)) ∃x. (P(x) ∧ ¬Q(x))

∀x. (Person(x) →
) x loves at least one corgi y
)

We saw how to quantify over pairs of things, and saw
that there are multiple ways of doing so.

∀x. ∀y. (Pancake(x) ∧ Pancake(y) →
 TasteSimilar(x, y)
)

∀x. (Pancake(x) →
∀y. (Pancake(y) →

TasteSimilar(x, y)
)

)

We saw that we can check our work by plugging in specific
values and seeing whether they work they way we expect

them to work.

∃S. (Set(S) ∧
∀x. (x ∈ S →

Integer(x) ∧ ¬Negative(x)
)

)

⚠ ⚠
Choose S = {137}.

And, finally, we saw where biconditionals come from,
especially in set theory contexts.

∃S. (Set(S) ∧
∀x. (x ∈ S ↔ Integer(x) ∧ ¬Negative(x))

)

Hope this helps!

Please feel free to ask
questions if you have them.

Did you find this useful? If
so, let us know! We can go

and make more guides like these.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299

